Interesting… although quite complex (for me) and long… Some qutesAlgunas citas de:
Noam Chomsky on Where Artificial Intelligence Went Wrong – The Atlantic
“Behaviorist principles of associations could not explain the richness of linguistic knowledge, our endlessly creative use of it, or how quickly children acquire it with only minimal and imperfect exposure to language presented by their environment.
According to Marr, a complex biological system can be understood at three distinct levels. The first level (“computational level”) describes the input and output to the system, which define the task the system is performing. In the case of the visual system, the input might be the image projected on our retina and the output might our brain’s identification of the objects present in the image we had observed. The second level (“algorithmic level”) describes the procedure by which an input is converted to an output, i.e. how the image on our retina can be processed to achieve the task described by the computational level. Finally, the third level (“implementation level”) describes how our own biological hardware of cells implements the procedure described by the algorithmic level.
As written today, the history of cognitive science is a story of the unequivocal triumph of an essentially Chomskyian approach over Skinner’s behaviorist paradigm — an achievement commonly referred to as the “cognitive revolution,” though Chomsky himself rejects this term. While this may be a relatively accurate depiction in cognitive science and psychology, behaviorist thinking is far from dead in related disciplines. Behaviorist experimental paradigms and associationist explanations for animal behavior are used routinely by neuroscientists who aim to study the neurobiology of behavior in laboratory animals such as rodents, where the systematic three-level framework advocated by Marr is not applied
Noam Chomsky, speaking in the symposium, wasn’t so enthused. Chomsky critiqued the field of AI for adopting an approach reminiscent of behaviorism, except in more modern, computationally sophisticated form. Chomsky argued that the field’s heavy use of statistical techniques to pick regularities in masses of data is unlikely to yield the explanatory insight that science ought to offer. For Chomsky, the “new AI” — focused on using statistical learning techniques to better mine and predict data — is unlikely to yield general principles about the nature of intelligent beings or about cognition.
High-throughput sequencing, a technique by which millions of DNA molecules can be read quickly and cheaply, turned the sequencing of a genome from a decade-long expensive venture to an affordable, commonplace laboratory procedure. … The great geneticist and Nobel-prize winning biologist Sydney Brenner once defined the field as “low input, high throughput, no output science.” Do we rely on powerful computing and statistical approaches to tease apart signal from noise, or do we look for the more basic principles that underlie the system and explain its essence? The urge to gather more data is irresistible, though it’s not always clear what theoretical framework these data might fit into. These debates raise an old and general question in the philosophy of science: What makes a satisfying scientific theory or explanation, and how ought success be defined for science?
And how the linear thinking and processes could be, finally changed by quantum computing (as far as I seemed to understand…)